

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 001-96233 Rev. *B Revised November 24, 2017

Features

▪ Adjustable counter size: 8, 16, or 32 bits

▪ Counter resolution of 1x, 2x, or 4x the frequency of the A and B
inputs, for more accurate determination of position or speed

▪ Optional index input to determine absolute position

▪ Optional glitch filtering to reduce the impact of system-generated noise on the inputs

General Description

The Quadrature Decoder (QuadDec) Component gives you the ability to count transitions on a
pair of digital signals. The signals are typically provided by a speed/position feedback system
mounted on a motor or trackball.

The signals, typically called A and B, are positioned 90 degrees out of phase, which results in a
Gray code output. A Gray code is a sequence where only one bit changes on each count. This is
essential to avoid glitches. It also allows detection of direction and relative position. A third
optional signal, named Index, is used as a reference to establish an absolute position once per
rotation.

Index

Clock

B

A

Reset

When to Use a Quadrature Decoder

A quadrature decoder is used to decode the output of a quadrature encoder. A quadrature
encoder senses the current position, velocity, and direction of an object (for example, mouse,
trackball, robotic axles, and others).

A quadrature decoder can also be used for precision measurement of speed, acceleration, and
position of a motor's rotor and with rotary knobs to determine user input.

Quadrature Decoder (QuadDec)
3.0

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 2 of 22 Document Number: 001-96233 Rev. *B

Input/Output Connections

This section describes the various input and output connections for the Quadrature Decoder
Component. An asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol
under the conditions listed in the description of that I/O.

quad_A – Input

The “A” input of the Quadrature Decoder.

quad_B – Input

The “B” input of the Quadrature Decoder.

index – Input *

This input detects a reference position for the Quadrature Decoder. When using an index input, if
inputs A, B, and index are all zero, the counter is also reset to zero. Additional logic is typically
added to gate the index pulse. Index gating allows the counter to only be reset during one of
many possible rotations. An example is a linear actuator that only resets the counter when the
far limit of travel has been reached. This limit is signaled by a mechanical limit switch whose
output is connected to the Index pulse.

This input displays by default, but it can be hidden by deselecting the Use index input
parameter.

clock – Input

Clock signal for sampling and glitch filtering the inputs. If you are using glitch filtering, the filtered
outputs will not change until three successive samples of the input have the same value. For
effective glitch filtering, the sample clock period should be greater than the maximum time during
which glitching is expected to take place. A counter can be incremented or decremented at a
resolution of 1x, 2x, or 4x the frequency of the A and B inputs.

The clock input frequency should be greater than or equal to 10x the maximum A or B input
frequency.

interrupt – Output

Interrupt on one or more of the following events:

▪ Counter overflow and underflow

▪ Counter reset due to index input (if index is used)

▪ Invalid state transition on the A and B inputs

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 3 of 22

Component Parameters

Drag a Quadrature Decoder component onto your design and double-click it to open the
Configure dialog. The dialog contains multiple tabs with categorized parameters.

Counter Size Tab

This tab is used to define the counter size, in bits. The counter holds the current position
encoded by a quadrature encoder.

Select a counter that is large enough to encode the maximum position in both the positive and
negative directions. The setting can be: 8 bit, 16 bit, or 32 bit.

The 32-bit counter implements the lower 16 bits in the hardware counter and the upper 16 bits in
software to reduce hardware resource use. For this target, an additional ISR is used. To work
properly with the 32-bit counter, interrupts must be enabled. You can add ISR code to source
files as needed; see the Interrupt Component datasheet for more details.

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 4 of 22 Document Number: 001-96233 Rev. *B

Counter Resolution Tab

This tab contains the number of counts recorded in one period of the A and B inputs. It shows
the transitions of the input signals that are used to update the counter. As the resolution gets
higher, the position can be resolved more accurately, at the possible cost of a larger counter.
The setting can be 1x, 2x, or 4x.

Use Index Input Tab

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 5 of 22

This tab contains a field to enable or disable the index input. An index input can be used to
indicate that a reference position has been reached. If an index input is used, then when the A,
B, and index inputs are all zero, the counter is reset and an interrupt can be generated. Index
input is enabled by default.

Enable Glitch Filtering Tab

This tab contains a field to enable or disable digital glitch filtering. Filtering can be applied to
reduce the probability of miscounts because of glitches on the inputs. Some filtering is already
done using hysteresis on the GPIOs, but additional filtering could be required.

If enabled, filtering is applied to all inputs. The filtered outputs do not change until three
successive samples of the input have the same value. For effective filtering, the period of the
sample clock should be greater than the maximum time during which glitching is expected to
occur. Glitch filtering is enabled by default.

Clock Selection

There is no internal clock in this component. You must attach a clock source. This component
operates from a single clock connected to the component.

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 6 of 22 Document Number: 001-96233 Rev. *B

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “QuadDec_1” to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“QuadDec.”

Functions

Function Description

QuadDec_Start() Initializes UDBs and other relevant hardware

QuadDec_Stop() Turns off UDBs and other relevant hardware

QuadDec_GetCounter() Reports the current value of the counter

QuadDec_SetCounter() Sets the current value of the counter

QuadDec_GetEvents() Reports the current status of events

QuadDec_SetInterruptMask() Enables or disables interrupts due to the events

QuadDec_GetInterruptMask() Reports the current interrupt mask settings

QuadDec_Sleep() Prepares the component to go to sleep

QuadDec_Wakeup() Prepares the component to wake up

QuadDec_Init() Initializes or restores default configuration provided with the customizer

QuadDec_Enable() Enables the Quadrature Decoder

QuadDec_SaveConfig() Saves the current user configuration

QuadDec_RestoreConfig() Restores the user configuration

void QuadDec_Start(void)

Description: Initializes UDBs and other relevant hardware. Resets counter to 0, and enables or disables
all relevant interrupts. Starts monitoring the inputs and counting.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 7 of 22

void QuadDec_Stop(void)

Description: Turns off UDBs and other relevant hardware.

Parameters: None

Return Value: None

Side Effects: None

int8/16/32 QuadDec_GetCounter(void)

Description: Reports the current value of the counter.

Parameters: None

Return Value: int8/16/32: Counter value. Return type is signed depending on the counter size setting. A
positive value indicates clockwise movement (B before A).

Side Effects: None

void QuadDec_SetCounter(int8/16/32 value)

Description: Sets the current value of the counter.

Parameters: int8/16/32 value: The new value. Parameter type is signed depending on the counter size
setting.

Return Value: None

Side Effects: None

uint8 QuadDec_GetEvents(void)

Description: Reports the current status of events. This function clears the bits of the status register.

Parameters: None

Return Value: The events, as bits in an unsigned 8-bit value:

Bit Description

QuadDec_COUNTER_OVERFLOW Counter overflow

QuadDec_COUNTER_UNDERFLOW Counter underflow

QuadDec_COUNTER_RESET Counter reset due to index, if index input is
used

QuadDec_INVALID_IN Invalid A, B inputs state transition

Side Effects: None

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 8 of 22 Document Number: 001-96233 Rev. *B

void QuadDec_SetInterruptMask(uint8 mask)

Description: Enables or disables interrupts caused by the events. For the 32-bit counter, the overflow,
underflow, and reset interrupts cannot be disabled; these bits are ignored.

Parameters: uint8 mask: Enable or disable bits in an 8-bit value, where 1 enables the interrupt:

Bit Description

QuadDec_COUNTER_OVERFLOW Enable interrupt caused by counter overflow

QuadDec_COUNTER_UNDERFLOW Enable interrupt caused by counter underflow

QuadDec_COUNTER_RESET Enable interrupt caused by counter reset

QuadDec_INVALID_IN Enable interrupt caused by invalid input state
transition

Return Value: None

Side Effects: None

uint8 QuadDec_GetInterruptMask(void)

Description: Reports the current interrupt mask settings.

Parameters: None

Return Value: Enable or disable bits in an 8-bit value, where 1 enables the interrupt.

For the 32-bit counter, the overflow, underflow, and reset enable bits are always set.

Bit Description

QuadDec_COUNTER_OVERFLOW Interrupt caused by counter overflow

QuadDec_COUNTER_UNDERFLOW Interrupt caused by counter underflow

QuadDec_COUNTER_RESET Interrupt caused by counter reset

QuadDec_INVALID_IN Interrupt caused by invalid A, B inputs state
transition

Side Effects: None

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 9 of 22

void QuadDec_Sleep(void)

Description: This is the preferred routine to prepare the component for sleep. The QuadDec_Sleep()
routine saves the current component state. Then it calls the QuadDec_Stop() function and
calls QuadDec_SaveConfig() to save the hardware configuration.

Call the QuadDec_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power management functions.

Parameters: None

Return Value: None

Side Effects: None

void QuadDec_Wakeup(void)

Description: This is the preferred routine to restore the component to the state when QuadDec_Sleep()
was called. The QuadDec_Wakeup() function calls the QuadDec_RestoreConfig() function
to restore the configuration. If the component was enabled before the QuadDec_Sleep()
function was called, the QuadDec_Wakeup() function will also re-enable the component.

Parameters: None

Return Value: None

Side Effects: Calling the QuadDec_Wakeup() function without first calling the QuadDec_Sleep() or
QuadDec_SaveConfig() function may produce unexpected behavior.

void QuadDec_Init(void)

Description: Initializes or restores the component according to the customizer Configure dialog settings. It
is not necessary to call QuadDec_Init() because the QuadDec_Start() routine calls this
function and is the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be set to values according to the customizer Configure dialog.

void QuadDec_Enable(void)

Description: Activates the hardware and begins component operation. It is not necessary to call
QuadDec_Enable() because the QuadDec_Start() routine calls this function, which is the
preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: None

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 10 of 22 Document Number: 001-96233 Rev. *B

void QuadDec_SaveConfig(void)

Description: This function saves the component configuration and nonretention registers. This function
also saves the current component parameter values, as defined in the Configure dialog or as
modified by appropriate APIs. This function is called by the QuadDec_Sleep() function.

Parameters: None

Return Value: None

Side Effects: None

void QuadDec_RestoreConfig(void)

Description: This function restores the component configuration and nonretention registers. This function
also restores the component parameter values to what they were before calling the
QuadDec_Sleep() function.

Parameters: None

Return Value: None

Side Effects: Calling this function without first calling the QuadDec_Sleep() or QuadDec_SaveConfig()
function may produce unexpected behavior.

Global Variables

Function Description

QuadDec_initVar QuadDec_initVar indicates whether the Quadrature Decoder has been initialized.
The variable is initialized to 0 and set to 1 the first time QuadDec_Start() is called.
This allows the component to restart without re-initialization after the first call to
the QuadDec_Start() routine.

If re-initialization of the component is required, then the QuadDec_Init() function
can be called before the QuadDec_Start() or QuadDec_Enable() function.

QuadDec_count32SoftPart High 16 bits of 32-bit counter value is stored in this variable.

QuadDec_swStatus Status register value is stored in this variable.

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated
by PSoC Creator. Refer to the PSoC Creator Help and Component Author Guide for the more
details.

In order to add code to the macro callback present in the component’s generated source files,
perform the following:

▪ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will
“uncomment” the function call from the component’s source code.

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 11 of 22

▪ Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

▪ Write the function implementation (in any user file).

Callback Function [1] Associated Macro Description

QuadDec_ISR_EntryCallback QuadDec_ISR_ENTRY_CALLBACK Used at the beginning of the
QuadDec_ISR() interrupt handler to
perform additional application-specific
actions.

QuadDec_ISR_ExitCallback QuadDec_ISR_EXIT_CALLBACK Used at the end of the QuadDec_ISR()
interrupt handler to perform additional
application-specific actions.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator components

▪ specific deviations – deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The Quadrature Decoder component does not have any specific deviations.

This component has the following embedded components: Counter, Interrupt. Refer to the
corresponding component datasheet for information on their MISRA compliance and specific
deviations.

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

1 The callback function name is formed by component function name optionally appended by short explanation
and “Callback” suffix.

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 12 of 22 Document Number: 001-96233 Rev. *B

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Functional Description

Default Configuration

The default configuration for the Quadrature Decoder is an 8-bit up and down counter with 1x
resolution, enabled index input, and enabled glitch filtering.

Quadrature Decoder operation

The Quadrature Decoder component starts counting transitions from 0 and could count in
positive (clockwise) and negative (anticlockwise) directions to minimum and maximum limits,
depending on counter size. The ranges for counting are the following:

▪ 8-bit counter: -128 to +127

▪ 16-bit counter: -32,768 to +32,767

▪ 32-bit counter: -2,147,483,648 to +2,147,483,647

When the Quadrature Decoder reaches the positive direction limit, the component generates an
overflow event and reloads the counter to 0. The overflow event indicates 127 / 32,767 /
2,147,483,647 counts in the positive direction for an 8- / 16- / 32-bit counter size, respectively.

When the Quadrature Decoder reaches the negative direction limit, the component generates an
underflow event and reloads the counter to 0. The underflow event indicates 128 / 32,768 /
2,147,483,648 counts in the negative direction for an 8- / 16- / 32-bit counter size, respectively.

Therefore, when you write a minimum or maximum limit value (127 / 32,767 / 2,147,483,647
or -128 / -32,768 / -2,147,483,648 for an 8- / 16- / 32-bit counter, respectively) with the
QuadDec_SetCounter() API, you will get an overflow or underflow event and counter reload to 0.

Also, the minimum and maximum limit values cannot be read with the QuadDec_GetCounter()
API, and they should be handled using the overflow and underflow event.

State Transition

Quadrature phase signals are typically decoded with a state machine and an up/down counter. A
conventional decoder has four states, corresponding to all possible values of the A and B inputs.
The state transition diagram is shown below (same-state transitions are not depicted). State

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 13 of 22

transitions marked with a “+” and “–” indicate increment and decrement operations on the
quadrature phase counter.

For each full cycle of the quadrature phase signal, the quadrature phase counter changes by
four counts. Lower-resolution counters can also be used by implementing up/down operations on
only a subset of the state transitions. A quarter-resolution decoder is shown below.

All inputs are sampled using a clock signal derived internally within the device.

Following diagrams shows more detailed state machine implementation.

Figure 1. 1x resolution

AB
00

AB
10

AB
01

AB
11

+

+

+

+

- -

- -

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 14 of 22 Document Number: 001-96233 Rev. *B

AB

00

Error

11/1

00/1 00/0

10/1 01/1

AB/Index

xx/x

10/1 11 11

10

00

10/1

11/1

00/0

01

00/0

10

01/1

01/1

11/1

AB

10

AB

01

AB

11

Reset

00/1

01

11

00/1

00/0
00/1

01/1
+

-
10/1

+

Figure 2. 2x resolution

AB

00

Error

11/1

00/1 00/0

10/1 01/1

AB/Index

xx/x

10/1 11 11

10

00

10/1

11/1

00/0

01

00/0

10

01/1

01/1

11/1

AB

10

AB

01

AB

11

Reset

00/1

01

11

00/1

00/000/1

01/1
+

-

-

+

10/1

+

Figure 3. 4x resolution

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 15 of 22

AB

00

Error

11/1

00/1 00/0

10/1 01/1

AB/Index

xx/x

10/1 11 11

10

00

10/1

11/1

00/0

01

00/0

10

01/1

01/1

11/1

AB

10

AB

01

AB

11

Reset

00/1

01

11

00/1

00/000/1

01/1
+

-

-

+

-

+

+

-

10/1

+

-

State’s description:

State Description

Reset Reset State – Counter value resets

AB_00 00 State quadrature inputs

AB_01 01 State quadrature inputs

AB_10 10 State quadrature inputs

AB_11 11 State quadrature inputs

Error Error State – invalid transitions

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 16 of 22 Document Number: 001-96233 Rev. *B

Block Diagram and Configuration

The Quadrature Decoder is only available as a UDB configuration of blocks. The APIs are
described earlier in this document and the registers are described in the next section to define
the overall implementation of the component.

Registers

Status

Bits 7 6 5 4 3 2 1 0

Value reserved invalid in reset underflow overflow

The status register is read-only. It contains the various status bits defined for the Quadrature
Decoder. The value of this register is available with the QuadDec_GetEvents() function. The
interrupt output signal is generated from an ORing of the masked bit fields within the status
register.

You can set the mask using the QuadDec_SetInterruptMask() function. After you receive an
interrupt you can retrieve the interrupt source by reading the status register with the
QuadDec_GetEvents() function. The status register is clear on read, so the
QuadDec_GetEvents() function clears the bits of the status register. All operations on the status
register must use the following defines for the bit fields, because these bit fields may be moved
within the status register at build time.

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 17 of 22

There are several bit field masks defined for the status registers. Any of these bit fields may be
included as an interrupt source. All bit fields are configured as sticky bits in the status register.
Defines are available in the generated header (.h) file as follows:

▪ QuadDec_COUNTER_OVERFLOW – Defined as the bit mask of the Status register bit
“counter overflow.”

▪ QuadDec_COUNTER_UNDERFLOW – Defined as the bit mask of the Status register bit
“Counter underflow.”

▪ QuadDec_RESET – Defined as the bit-mask of the Status register bit “reset due index.”

▪ QuadDec_INVALID_IN – Defined as the bit-mask of the Status register bit “invalid state
transition on the A and B inputs.”

Resources

The Quadrature Decoder component is placed throughout the UDB array. The component
utilizes the following resources.

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

8-bit, resolution 1x, no
glitch filtering, use index

1 22 2 1 – –

16-bit, resolution 2x, glitch
filtering, use index

2 31 2 1 – –

32-bit, resolution 4x, glitch
filtering, use index

2 32 2 1 – 1

Note The PSoC 4200 family can support an 8-, 16-, or 32-bit counter size with glitch filtering
disabled. Other configurations are too large for this family.

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 18 of 22 Document Number: 001-96233 Rev. *B

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

8-bit, resolution 1x, no
glitch filtering, use index

386 7 554 10 594 10

16-bit; resolution 2x,
glitch filtering, use index

455 8 N/A N/A 600 14

32-bit; resolution 4x,
glitch filtering, use index

664 12 N/A N/A 776 18

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics

Parameter Description Min Typ[1] Max Units

IDD Component current consumption

8-bit, resolution 1x, no glitch filtering, use index – 15 – µA/MHz

16-bit, resolution 2x, glitch filtering, use index – 20 – µA/MHz

32-bit, resolution 4x, glitch filtering, use index – 26 – µA/MHz

1. Device IO and clock distribution current not included. The values are at 25 °C.

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 19 of 22

AC Characteristics

Parameter Description Min Typ Max[1] Units

fCLOCK Component clock frequency

8-bit, resolution 1x, no glitch filtering, use index – – 33 MHz

16-bit, resolution 2x, glitch filtering, use index – – 29 MHz

32-bit, resolution 4x, glitch filtering, use index – – 28 MHz

fAB Component A and B Frequency – – fCLOCK/10 MHz

tIND Index signal width no glitch filtering 2 –

– tCY_clock
[2]

glitch filtering 3

tGL Time during which glitching is expected to
occur

– – 3 tCY_clock

tE Encoder pulse width (low or high) 4 – – tCY_clock

tES Encoder state period 2 – – tCY_clock

tELP Encoder period width 10 – – tCY_clock

1. The values provide a maximum safe operating frequency of the component. The component may run at higher
clock frequencies, at which point validation of the timing requirements with STA results is necessary.

2. tCY_clock = 1/fCLOCK Cycle time of one clock period

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 20 of 22 Document Number: 001-96233 Rev. *B

Figure 4. Timing Diagram

Input @ index

clock

Input @ quad_A

Input @ quad_B

tELP

tE tE

tEStES

tIND

Noise

Spike

tGL

tCY_clock

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.0.b Minor datasheet edits.

3.0.a Datasheet update. Added Macro Callbacks section.

3.0 Updated version of the embedded Counter component
to the most current version.

Out of date component may contain defects or
incompatibilities.

2.40.a Added clearing of QuadDec_count32SoftPart global
variable in QuadDec_Start() API.

QuadDec_Start() API should reset counter
value to initial state.

Swapped A and B signals labels in the component
customizer to match implementation.

Signal labels were incorrect.

Updated component Block Diagram. Added additional logic to the component
schematic to correct a problem with a false
underflow event generation at component
start.

2.40 Updated the QuadDec_Enable() API. Added clearing of pending interrupts to correct
a problem with a false underflow event
generation at component start.

Updated the QuadDec_SetCounter() API. The QuadDec_SetCounter() API had a
problem with setting a negative value for an 8-
or 16-bit counter size, which is now fixed.

2.30.b Edited the datasheet. Added a Component Errata section to
document known problems in the component.

Added Quadrature Decoder operation details
to the Functional Description.

PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-96233 Rev. *B Page 21 of 22

Version Description of Changes Reason for Changes / Impact

Added a note to the Resource usage table.

2.30.a Edited datasheet to remove references to PSoC 5. PSoC 5 has been replaced by the PSoC 5LP.

2.30 Updated internal Counter component to version 2.40
on Quadrature Decoder Component schematic.

This is for use with the latest version of the
Counter component.

Fixed state machine implementation. False operation due to oscillating on
quadrature inputs.

Updated State Transition section with more detailed
state machine diagrams.

Updated datasheet with memory usage for PSoC 4

2.20 Added MISRA Compliance section. The component does not have any specific
deviations.

Added PSoC4 device support.

Updated internal Counter component to version 2.30
on Quadrature Decoder Component schematic.

For use with the latest version of the Counter
component.

2.10 Added PSoC 5LP device support.

Added all Quadrature Decoder APIs with
CYREENTRANT keyword when they included in .cyre
file.

Not all APIs are truly reentrant. Comments in
the component API source files indicate which
functions are candidates.

This change is required to eliminate compiler
warnings for functions that are not reentrant
used in a safe way: protected from concurrent
calls by flags or Critical Sections.

2.0 Updated block diagram of Quadrature Decoder in the
Block Diagram and Configuration section of the
datasheet.

For use with the latest version of the Counter
component.

Updated internal Counter component to version 2.0 on
Quadrature Decoder Component schematic.

For use with the latest version of the Counter
component.

Removed obsolete defines.

1.50.a Added characterization data to datasheet

Minor datasheet edits and updates

1.50 Changed QuadDec_Start() API: removed write to
Control Register.

Beta5 STA-Based Optimization.

Added QuadDec_Sleep()/ QuadDec_Wakeup() APIs. Added APIs to support the low power modes.

Added QuadDec_Init() API. Added to provide an API to initialize/restore
the component without starting it.

1.20 Updated the Configure dialog.

Removed the QuadDec_INT.c file after compilation if the counter size is less than 32.

Removed the checking condition in the QuadDec_INT.c file for counter size = 32 bit.

Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 22 of 22 Document Number: 001-96233 Rev. *B

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a Quadrature Decoder

	Input/Output Connections
	quad_A – Input
	quad_B – Input
	index – Input *
	clock – Input
	interrupt – Output

	Component Parameters
	Counter Size Tab
	Counter Resolution Tab
	Use Index Input Tab
	Enable Glitch Filtering Tab

	Clock Selection
	Application Programming Interface
	Functions
	void QuadDec_Start(void)
	void QuadDec_Stop(void)
	int8/16/32 QuadDec_GetCounter(void)
	void QuadDec_SetCounter(int8/16/32 value)
	uint8 QuadDec_GetEvents(void)
	void QuadDec_SetInterruptMask(uint8 mask)
	uint8 QuadDec_GetInterruptMask(void)
	void QuadDec_Sleep(void)
	void QuadDec_Wakeup(void)
	void QuadDec_Init(void)
	void QuadDec_Enable(void)
	void QuadDec_SaveConfig(void)
	void QuadDec_RestoreConfig(void)

	Global Variables
	Macro Callbacks

	MISRA Compliance
	Sample Firmware Source Code
	Functional Description
	Default Configuration
	Quadrature Decoder operation
	State Transition

	Block Diagram and Configuration
	Registers
	Status

	Resources
	API Memory Usage
	DC and AC Electrical Characteristics
	DC Characteristics
	AC Characteristics

	Component Changes

